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Abstract The efficacy of working memory (WM) training
has been a controversial and hotly debated issue during the
past years. Despite a large number of training studies and
several meta-analyses, the matter has not yet been solved.
We conducted a multi-level meta-analysis on the cognitive
transfer effects in healthy adults who have been administered
WM updating training with n-back tasks, the most common
experimental WM training paradigm. Thanks to this method-
ological approach that has not been employed in previous
meta-analyses in this field, we were able to include effect sizes
from all relevant tasks used in the original studies. Altogether
203 effect sizes were derived from 33 published, randomized,
controlled trials. In contrast to earlier meta-analyses, we sep-
arated task-specific transfer (here untrained n-back tasks) from
other WM transfer tasks. Two additional cognitive domains of
transfer that we analyzed consisted of fluid intelligence (Gf)
and cognitive control tasks. A medium-sized transfer effect
was observed to untrained n-back tasks. For other WM tasks,
Gf, and cognitive control, the effect sizes were of similar size
and very small. Moderator analyses showed no effects of age,
training dose, training type (single vs. dual), or WM and Gf
transfer task contents (verbal vs. visuospatial). We conclude
that a substantial part of transfer following WM training with

the n-back task is task-specific and discuss the implications of
the results to WM training research.

Keywords Cognitive training .Workingmemory . Executive
functions . N-back .Meta-analysis

Working memory (WM) training has stirred considerable in-
terest amongst researchers and public at large during the past
decade (von Bastian & Oberauer, 2014; Green & Bavelier,
2008; Klingberg, 2010; Lövdén, Bäckman, Lindenberger,
Schaefer, & Schmiedek, 2010; Morrison & Chein, 2011).
The main reason for this widespread interest is that WM has
been linked to a number of important skills, such as academic
achievement and general intellectual capacity (Engle, 2002;
Shipstead, Redick, & Engle, 2010). Moreover, WM deficits
often occur in common clinical conditions, such as dyslexia,
ADHD, and major depression, as well as in normal aging
(Lezak, Howieson, & Loring, 2004). As a system for short-
term maintenance and manipulation of task-relevant informa-
tion (Baddeley, 2000), WM is inherently involved in all
higher-level cognitive activities. Accordingly, WM training,
if successful, might have wide-reaching consequences for an
individual.

The results from the initial WM training studies were very
promising, because they suggested that it is possible to im-
prove performance not only on the trained task but also on
untrained tasks measuring other cognitive functions (Jaeggi,
Buschkuehl, Jonides, & Perrig, 2008; Klingberg, Forssberg,
&Westerberg, 2002). The initial enthusiasm, however, turned
into a controversy as subsequent training studies reported
mixed results (Brehmer, Westerberg, Bäckman, 2012; Bürki,
Ludwig, Chicherio, & De Ribaupierre, 2014; Bäckman et al.,
2011; Chooi & Thompson, 2012; Colom et al., 2013; Dahlin,
Neely, Larsson, Bäckman, & Nyberg, 2008; Jaeggi et al.,

Electronic supplementary material The online version of this article
(doi:10.3758/s13423-016-1217-0) contains supplementary material,
which is available to authorized users.

* Anna Soveri
anna.soveri@abo.fi

1 Department of Psychology, ÅboAkademi University, Turku, Finland
2 Turku Brain and Mind Center, University of Turku, Turku, Finland

Psychon Bull Rev (2017) 24:1077–1096
DOI 10.3758/s13423-016-1217-0

http://dx.doi.org/10.3758/s13423-016-1217-0
http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-016-1217-0&domain=pdf


2008, 2010; Klingberg et al., 2002, 2005; Kundu, Sutterer,
Emrich, & Postle, 2013; Lilienthal, Tamez, Shelton,
Myerson, & Hale, 2013; Oelhafen et al., 2013; Redick et al.,
2013; Salminen, Strobach, & Schubert, 2012; Thompson
et al., 2013; Waris, Soveri, & Laine, 2015). The key issue is
the existence of generalization following cognitive training,
because the goal is to elicit positive transfer effects on un-
trained tasks. Most training studies make a distinction be-
tween near and far transfer effects. Near transfer refers to
enhanced performance in a task that is intended to measure
the trained cognitive domain and far transfer to improvement
in another cognitive domain, such as WM training leading to
better performance in a task measuring intelligence (von
Bastian & Oberauer, 2014). Because WM training studies
have reported near transfer, far transfer, both near and far
transfer, or no transfer at all, it has been difficult to draw
conclusions about the efficacy of WM training. What compli-
cates the matter further is that many of the previous training
studies have suffered from methodological shortcomings,
such as using small sample sizes, employing a no-contact
control group, failing to randomly assign participants to
groups, or using only a single task to measure a given cogni-
tive ability (Melby-Lervåg & Hulme, 2013; Melby-Lervåg,
Redick, & Hulme, 2016; Morrison & Chein, 2011; Shipstead,
Redick et al., 2010; Shipstead, Redick, & Engle, 2012).

Previousmeta-analyses on workingmemory training

Given the widespread interest in WM training and the large
variability in results, it is not surprising that during the past
five years a number of meta-analyses have addressed the out-
comes ofWM training (Au et al., 2015; Dougherty, Hamovitz,
& Tidwell, 2016; Melby-Lervåg, & Hulme, 2013; Melby-
Lervåg & Hulme, 2016; Melby-Lervåg et al., 2016;
Schwaighofer, Fischer, & Bühner, 2015; Weicker, Villringer,
& Thöne-Otto, 2016; for meta-analyses investigating not only
WM training, see Hindin & Zelinski, 2012; Karbach, &
Verhaeghen, 2014; Karr, Areshenkoff, Rast, & Garcia-
Barrera, 2014; Kelly et al., 2014). Near and far transfer effects
of different kinds of WM training have been studied in four
meta-analyses (Melby-Lervåg &Hulme, 2013; Melby-Lervåg
et al., 2016; Schwaighofer et al., 2015; Weicker et al., 2016).
The results from these meta-analyses (Table 1) with both clin-
ical and healthy samples of children and adults showed that
WM training can produce small to large short-term near trans-
fer effects (verbal and visuospatial WM tasks) and null to
small effects of transfer to verbal and visuospatial reasoning
(or fluid intelligence; Gf) tasks. The results also showed small
transfer effects to cognitive control (Melby-Lervåg & Hulme,
2013; Weicker et al., 2016) and attention (Weicker et al.,
2016), but no transfer to long-term memory (Weicker et al.,
2016), arithmetic skills (Melby-Lervåg & Hulme, 2013; T
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Schwaighofer et al., 2015;Melby-Lervåg et al., 2016), reading
comprehension (Melby-Lervåg et al., 2016), or word
decoding (Melby-Lervåg & Hulme, 2013; Schwaighofer
et al., 2015; Melby-Lervåg et al., 2016).

As is evident from the short review above, there is some
disagreement between the previous meta-analyses, particular-
ly regarding the size of the near transfer effects. These discrep-
ancies are at least partly due to differences in decisions regard-
ing the studies included in the meta-analyses and the categori-
zation of tasks into different cognitive domains. For example,
the meta-analysis by Melby-Lervåg et al. (2016) included
studies that were not randomized, controlled trials.
Furthermore, all previous meta-analyses included only one
measure per domain per study. In some cases, this measure
was a single task selected to represent a domain in a study,
whereas in others, a mean value across the tasks was used.
Moreover, the choice of which tasks to include varies between
the meta-analyses. For example, unlike the other meta-analy-
ses, Schwaighofer et al. (2015) did not include the n-back task
in the near transfer measures due to validity issues with this
task. Also, simple span tasks, such as the digit span, were
considered WM measures in the Melby-Lervåg and Hulme
(2013) study, whereas the other meta-analyses coded simple
spans asmeasures of short-termmemory (STM; Schwaighofer
et al., 2015;Weicker et al., 2016) or excluded them completely
from the analyses (Melby-Lervåg et al., 2016). Finally, a close
look at the measures in Melby-Lervåg and Hulme (2013)
showed three instances where the trained task itself was in-
cluded in the near transfer analyses, likely leading to an undue
inflation of the corresponding effect size. Of the previous me-
ta-analyses, Melby-Lervåg and Hulme (2013) reported the
strongest effect sizes for near transfer. Given these issues
concerning the previous meta-analyses, further meta-analyses
in this popular research field are warranted.

Background for the present study

The variety of WM training programs, experimental designs,
and participant groups makes it challenging to draw definite
conclusions on the WM training outcomes. To limit three
sources of variability (training program, age, health status),
the present meta-analysis focused solely on studies with
healthy adults who trained with the most commonly used
computerized experimental WM training paradigm, namely
with n-back tasks. In the n-back task (Kirchner, 1958), the
participant is presented with a sequence of stimuli and the task
is to decide for each stimulus whether it is the same as the one
presented n trials earlier. In a single n-back task, the partici-
pant is required to attend to one stream of stimuli, and in a dual
n-back task, two streams of stimuli are presented simulta-
neously. Figure 1 shows an example of a dual n-back task with
an auditory-verbal and a visuospatial stream of stimuli.

Previous studies comparing the effects of single and dual n-
back training have shown that both task versions seem to be
equally effective in producing generalization and that the
transfer effects are fairly similar (Jaeggi et al., 2010; Jaeggi,
Buschkuehl, Shah, & Jonides, 2014). The n-back task often is
highlighted as a WM updating measure (Szmalec,
Verbruggen, Vandierendonck, & Kemps, 2011), but it also
reflects active maintenance and capacity of the WM (plus
interference control if so-called lure stimuli are included in
the stimulus sequence; see NIMH Research Domain Criteria
Workshop onWorkingMemory, 2010). The concurrent valid-
ity of the n-back task, however, has been questioned as previ-
ous studies have reported low correlations between the n-back
task and other WM tasks, especially complex span tasks
(Miller, Price, Okun, Montijo, & Bowers, 2009; see Redick
& Lindsey, 2013, for a meta-analysis). Nevertheless, a recent
study showed that at a latent level, the n-back task is highly
correlated with other WM tasks (complex spans, WM
updating tasks, and sorting spans; Schmiedek, Lövdén, &
Lindenberger, 2014).

Fig. 1 Depiction of the dual n-back task. In a 2-back version, the
participants should press the corresponding Byes^ button for the third
location and for the fourth syllable.
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The efficacy of n-back training has previously been investi-
gated in three recent meta-analyses (Au et al., 2015; Melby-
Lervåg & Hulme, 2016; Melby-Lervåg et al., 2016). Au et al.
(2015) focused solely on the training effects on Gf. They in-
cluded 20 studies with healthy adults in their analyses and
found a small transfer effect of n-back training to Gf (g =
0.24). Au et al. (2015) also investigated the effects of various
moderators, such as the type of control group (active or pas-
sive), type of n-back task (single or dual), and type of material
in the Gf transfer tasks (matrix or nonmatrix; verbal or visuo-
spatial). Active control groups typically receive the same
amount of training as the training groups do, but with tasks that
are not intended to tap WM to any greater extent. Passive
control groups only participate in pre- and postsessions. The
results from the Au et al. (2015) meta-analysis indicated that
studies with passive control groups showed more transfer to Gf
than studies with active control groups. However, their follow-
up analyses revealed that this finding did not stem from a dif-
ference between active and passive control groups but from the
training groups for some reason performing better in studies
with passive controls than in studies with active controls.
According to Au et al. (2015), these results do not support the
idea that the Hawthorne or expectancy effects affect the results.
Finally, their results showed no effects of the other aforemen-
tioned moderators. The Au et al. (2015) meta-analysis was
challenged by Melby-Lervåg and Hulme (2016) who criticized
the exclusion of relevant studies, the calculation of effect sizes
without taking pretest differences between groups into account,
and the interpretation of the results comparing active and pas-
sive control groups. Melby-Lervåg and Hulme (2016) argued
that even though the difference between active and passive
control groups was not statistically significant in the Au et al.
(2015) meta-analysis, there was a difference in the pre-post
effect sizes between those two groups. They also emphasized
that the analysis only consisted of 12 studies in each category.
Melby-Lervåg and Hulme (2016) reanalyzed the Au et al.
(2015) data by including only the nonverbal reasoning tasks
and correcting for possible pretest differences between groups.
They found a very small but statistically significant effect of
transfer to these tasks (g = 0.13). Au et al. (2016) have later
responded to this critique, and they maintain that the
discrepancy between the effect sizes in the Au et al. (2015)
and Melby-Lervåg and Hulme (2016) analyses is mainly
related to differences in the various meta-analytic decisions,
such as the fact that Melby-Lervåg and Hulme (2016)
compared the same treatment group to several control
groups without taking the dependency between these
comparisons into account. Furthermore, to avoid confounds
stemming from methodological differences between studies,
Au et al. (2016) compared active control groups to passive
control groups within such n-back training studies that had
employed both. The results from those analyses showed no
difference between the two types of control groups.

In their recent meta-analysis on different kinds of WM
training, Melby-Lervåg et al. (2016) included the type of train-
ing paradigm as a moderator in their analyses. These results
showed null to moderate training effects from n-back training
to untrained WM tasks (verbal WM: g = 0.17 for studies with
active controls and g = 0.12 for passive controls; visuospatial
WM: g = 0.24 with active controls and g = 0.52 with passive
controls) and very small but statistically significant transfer
effects to nonverbal problem solving (g = 0.15 with active
controls and g = 0.26 with passive controls). Melby-Lervåg
et al. (2016) further pointed out that those n-back training
studies with active control groups that showed the largest
transfer effects to nonverbal ability all had small sample sizes
(less than 20 participants per group) and most of them also
showed decreases in performance from pretest to posttest in
the control groups. Melby-Lervåg et al. (2016) emphasized
that only studies with active control groups can be used to
evaluate the effectiveness of an intervention and they Brecom-
mend that investigators stop conductingworkingmemory train-
ing studies with untreated control groups and that journals
stop publishing them^ (p. 524).

Compared with the earlier meta-analyses on transfer fol-
lowing n-back training, the present one has several distinc-
tive features that we deem as important. First, as mentioned,
limiting the sources of variability (here training method, age,
and health status) should yield results that are easier to in-
terpret. Second, we strictly separated the trained tasks from
the untrained ones as mixing these would risk inflating the
near transfer effect (see above for the discussion on the
meta-analysis by Melby-Lervåg & Hulme, 2013). Third,
meta-analytic near transfer measures have lumped together
untrained WM tasks that differ from the training tasks only
by their stimuli and WM tasks that are structurally different
from the training tasks (Melby-Lervåg & Hulme, 2013;
Melby-Lervåg et al., 2016; Schwaighofer et al., 2015;
Weicker et al., 2016). We believe that one should keep these
two transfer measures apart to obtain a more detailed view
on the generalizability of WM training. For example, in n-
back training studies a near transfer effect rising only from
untrained n-back tasks could speak for acquisition of task-
specific strategies rather than improved WM per se. Fourth,
all previous meta-analyses have included only one measure
(one task or average of several tasks) per domain per orig-
inal sample in the analyses. The rationale for choosing a
specific task to represent a certain domain is not always fully
explicated. For example, in the meta-analysis by Melby-
Lervåg and Hulme (2013), there seems to be some inconsis-
tency in the selection of tasks so that a specific task is
excluded for some studies but not for all. In the present
meta-analysis, we were able to include all measures from
the original studies by employing a multilevel meta-
analytical approach, and thereby having less risk of biasing
the estimated training effect.
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Structure of the present meta-analysis

In the present meta-analysis on WM training with n-back
tasks, we investigated the transfer to untrained tasks
representing the following four cognitive domains: task-
specific near transfer as measured by untrained versions of
the n-back task, WM as represented by other than n-back
tasks, cognitive control, and Gf. Cognitive control was includ-
ed as a transfer domain because earlier studies suggest that
WM is closely related to other executive functions (Miyake
et al., 2000). Transfer to attention and cognitive control has
also been studied in two of the previous meta-analyses.
Melby-Lervåg and Hulme (2013) included only the Stroop
task in their analyses and Weicker et al. (2016) investigated
two executive domains: cognitive control and executive func-
tioning, and attention and processing speed. Both of these
domains included tasks that can be considered as measures
of inhibition (e.g., the Stroop task in the former and the
Simon and Flanker tasks in the latter one). In our cognitive
control domain, we included tasks that measure inhibition of
irrelevant information, set shifting, multitasking, and verbal
executive functions (e.g., verbal fluency). We excluded tasks
that measure attention (e.g., 0-back). Finally, in line with pre-
vious meta-analyses we included fluid intelligence (verbal and
nonverbal reasoning) as a separate domain in the analyses.
These four domains also form a rough dimension of the degree
of cognitive overlap between the training tasks and the transfer
tasks. If the magnitude of transfer effects follows the pre-
sumed cognitive overlap (Dahlin et al., 2008; Waris et al.,
2015), a decreasing degree of transfer should be seen when
moving from n-back transfer tasks to WM, cognitive control,
and Gf. However, as some previous studies suggest that the
correlations between n-back tasks and other WM tasks are
very low (Redick & Lindsey, 2013), it is possible that the
transfer effects to untrained WM tasks are lower in this
meta-analysis than in those previous meta-analyses that inves-
tigated various kinds of WM training. This also appears to be
the case in the analyses on n-back training in the Melby-
Lervåg et al. (2016) meta-analysis.

Several moderating factors were taken into account in the
present meta-analysis, namely the type of control group (ac-
tive vs. passive), type of training (single vs. dual n-back),
training dose (small vs. large), transfer materials (verbal vs.
nonverbal), and age (young vs. old). Following the current
discussion on the effects of the type of control group (Au
et al., 2016), we compared active and passive controls only
within studies (comparing active and passive control groups
within those studies that have employed both). We also used
the type of control group as a covariate in our analysis of the
training effect, thereby considering the potential influence of
the type of control group used in an experiment.

In addition, we implemented some methodological im-
provements that allowed us to more fully take advantage of

the information in the original studies. Because the training of
participants is quite resource intensive, a study in this field
typically contains a relatively small sample measured on sev-
eral dependent measures, both before and after training. For a
meta-analysis, the information value of a single original study
with a small sample is quite limited (for a discussion on this
problem in the context of working memory training, see Bogg
& Lasecki, 2014), but it can be enhanced by adequate model-
ing allowing for inclusion of several measures and by utilizing
the advantages of the repeated measures design.

Therefore, we made use of a multilevel meta-analytical ap-
proach to include effect sizes for all pertinent tasks from the
original studies while accounting for the fact that these effect
sizes came from the same sample. Themulti-level approach has
two general advantages. First, it allows us to include more
effect sizes and thereby gives us a better picture of the differ-
ences in the general training effects between studies. Second, it
allows for a more complete comparison of improvements on
different tasks within the same study, providing data for the
aforementioned moderation analyses. Furthermore, we took
full advantage of the repeated measures design used in the
original studies. A repeated measures design offers higher sta-
tistical power than an independent groups design, but only if
one accounts for how strongly the repeated measures are cor-
related. If this is disregarded, as is the case in the previousmeta-
analyses in this field, the standard errors of the effect sizes are
inflated to that of independent group designs. The effect sizes
themselves are not affected, but differences in reliability (for
other reasons than sample size) can only be caught by compar-
ing each individual’s posttest measure with the corresponding
pretest measure. To do this, one needs to analyze the original
data or, as in our case, account for the correlation between pre-
and posttest measures. Besides more accurately allocating the
appropriate relative weight to each study, a more crucial advan-
tage is seen in the increased statistical power. Thus, by account-
ing for the correlation between pre- and posttest measures, we
raise the statistical power of our meta-analysis, which allows us
to make use of the multi-level approach and more confidently
examine moderation effects.

Our research questions were as follows:

1. Does n-back training improve performance on other un-
trained n-back tasks, structurally differentWM tasks, cog-
nitive control tasks, or fluid intelligence tasks?

2. Is the type of control group (active vs. passive) related to
the transfer effects in the four domains?

3. Is the type of n-back training task (single vs. dual) related
to the transfer effects in the four domains?

4. Is the effect of dual n-back training different for verbal
and nonverbal transfer tasks?

5. Is age related to transfer effects in the four domains?
6. Is the duration of training related to transfer effects in the

four domains?

Psychon Bull Rev (2017) 24:1077–1096 1081



Method

Literature search and criteria for inclusion

We searched the electronic databases PubMed, PsycINFO
(ProQuest), Google Scholar, Google, and ERIC for relevant
research reports (articles, dissertations, and theses). The first
search was conducted in February 2015. The search term n-
back trainingwas used in all databases. In Google Scholar and
Google, citation marks (Bn-back training^) were used to re-
duce noise in the search. The first search resulted in 99 hits in
PubMed, 86 in PsycINFO, 189 in Google Scholar, 12,500 in
Google, and 5 in ERIC. We screened all hits in the databases
with the exception of Google, where we limited screening to
include only the first 100 hits. For a study to be included at this
stage, the following criteria had to be met:

1. A randomized, controlled trial with at least one training
group and at least one control group and a pretest-posttest
design.

2. Transfer tests were employed within any of the following
cognitive domains: n-back, WM, fluid intelligence, and
cognitive control.

3. Training program included only n-back task(s).
4. Training task in the active control group was not a WM

task.
5. Sample consisted of healthy adults.

Search hits were screened in the aforementioned order of the
databases. Our inclusion criteria yielded 12 studies from
PubMed, 8 additional studies from PsycINFO, 12 additional
studies from Google Scholar, and 2 additional studies from
Google (all numbers refer to unique studies; the number of
overlapping studies is not reported). Our search thus resulted
in 34 reports. In the next step, three theses were excluded be-
cause the data also were included in published articles, and one
thesis was excluded because different transfer measures were
used before and after training. Two theses had been written on
the same data collection and therefore were treated as one
study. The initial literature search thus resulted in 29 studies.

The literature search was updated three times: once in
July 2015, once in February 2016, and once in October 2016.
The search procedure was the same as in the initial literature
search. These searches resulted in the inclusion of six additional
studies: one from the first search, one from the second search,
and four from the last search. The reference lists of the included
studies and prior meta-analyses in the field were also screened,
and as a result, six potentially interesting studies were found.
Moreover, a yet unpublished study conducted by two of the
authors (Soveri, Karlsson, Waris, Grönholm-Nyman, & Laine,
submitted) of the present meta-analysis was included.

In sum, the total number of studies identified for inclusion
was 42. The authors of 18 of these studies were contacted to

receive necessary information not reported in the published
articles. We received the requested data for nine of these.
However, the remaining nine articles had to be excluded, be-
cause we did not receive the information or the authors in-
formed us that the requested data were reported in other arti-
cles already included in our sample of studies. Therefore, our
final sample consisted of 33 studies. Figure 2 depicts a flow
chart of the screening process.

We have chosen to exclude some of the n-back training
studies with healthy adults that have been included in previous
meta-analyses. These studies are listed in Table S1 together
with the reason for exclusion. Furthermore, the Seidler et al.
(2010) study in Au et al. (2015) is referred to as Anguera et al.
(2012) in the present meta-analysis.

Data coding

Type of group The type of group was described with a vari-
able with three levels: BTraining group^; BActive control
group^; and BPassive control group.^ The criterion for consid
ering a control group as an active control group was that par-
ticipants received the same amount of training as the training
group, but that, purportedly, their training program did not
load on WM. Passive control group participants did not re-
ceive any intervention and participated in the pre- and post-
tests only.

Training task The training tasks were described by two var-
iables. BTraining type^ described whether a single or dual (or,
in one case, a triple) n-back task was employed. In a single n-
back task, the participants responded only to one stream of
stimuli, while the dual n-back task consisted of two streams
that were presented simultaneously. BTraining materials^ de-
fined whether the training task had been verbal, nonverbal or
both verbal and nonverbal. The n-back task was considered
verbal when the stimuli consisted of language materials such
as numbers, letters, or syllables. Task versions without verbal
elements were coded as nonverbal. Those training tasks that
included both verbal and nonverbal stimuli were exclusively
dual n-back tasks.

Training dose Training dose was operationalized with two
variables: BTraining hours^ and BTraining sessions.^ The for-
mer one corresponded to the total number of hours the partic-
ipants had been training and the latter one to the total number
of training sessions. Due to an uneven distribution, we dichot-
omized the two variables based on a median-split. For the
amount of training, the levels were: 6.67 hours or less and
more than 6.67 hours. When the information about training
dose was imprecise (e.g., 20-25 minutes per session), the low-
est number was used to calculate the total amount of training.
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The median-split for training sessions was as follows: 15 ses-
sions or less, and more than 15 sessions.

Transfer tasks Transfer was described by two variables:
BTransfer domain^ and BTransfer materials.^ BTransfer do-
main^ assigned transfer tasks to one of the following cognitive
domains: n-back, WM, cognitive control, and Gf. All un-
trained versions of the n-back task were coded as n-back trans-
fer measures, that is, measures of task-specific transfer. The re-
maining WM tasks employing some other paradigm than n-
back were coded as WM transfer tasks. We included, for ex-
ample, simple span tasks (e.g., digit span), complex span tasks
(e.g., operations span), and running memory span tasks (e.g.,
letter-memory). In our cognitive control domain, we included
tasks that tap inhibition of irrelevant information (e.g., Stroop
and Simon task), set shifting (e.g., Number-letter task), mul-
titasking (e.g., SynWin), and verbal executive functions (e.g.,
verbal fluency). Tasks that can be considered as measures of
attention and vigilance were not included in the cognitive
control domain. Finally, all tasks where the participant was
required to solve problems without being able to rely on pre-
vious experience to any greater extent, were coded as mea-
sures of Gf. Reading comprehension was not included in the

Gf measure due to the fact that in those tasks, the correct
answer is available in the testing materials. The few transfer
tasks that did not fit into these categories were excluded from
the analyses due to the low number of tasks per remaining
domain. One of these was the 0-back condition of the n-
back task, which was not included as an n-back measure,
because it exerts only a minimal load on WM. Neither was it
coded as a measure of cognitive control, because it is a vigi-
lance task and a variant of the trained task.

For some tasks, several measures were reported. For those
tasks for which both reaction times (RT) and accuracy were
available, we decided to code only the RT measures as on
some tasks accuracy rates are plagued by ceiling effects.
Also, for such tasks that included several conditions (e.g.,
single task trials, repetition trials, and switching trials in set
shifting tasks), we decided to include difference scores (e.g.,
the switching cost, which is the difference between switching
trials and repetition trials) when possible. In case these were
not available, we included the conditions that involved exec-
utive load (i.e., the switching condition).

In order to investigate whether transfer was more likely to
the verbal or nonverbal domain, the variable BTransfer mate-
rials^ was created. Here, the two transfer domains BGf^ and

Fig. 2 Search for literature and the screening process.
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BWM,^ for which we obtained the largest number of compar-
isons, were further divided into verbal versus nonverbal rea-
soning, and verbal versus nonverbal WM.

The coding of transfer tasks into cognitive domains (i.e.,
task-specific transfer as measured by n-back, WM, cognitive
control, and Gf), and materials (i.e., verbal vs. nonverbal), was
based on consensus decisions by three of the authors (A.S.,
M.L., and L.K.).

Age Age was dichotomized due to data-availability issues
(mean ages were reported in some studies and age ranges in
others) and because of its non-normal distribution. The vari-
able BAge group^ was coded in the following manner:
59 years or younger, and 60 years or older. This division
was made based on the age ranges reported in the studies.
For studies that did not include information about age range,
the decision was made based on other kinds of information
provided in the studies (e.g., university students and/or the
mean age and its standard deviation for the sample).

Furthermore, we coded the publication year of the articles
and theses and the countries where the studies were conduct-
ed. More detailed information about the abovementioned var-
iables in each original study is given in Tables S2 and S3.

Statistics for effect size calculation Group means, standard
deviations, and group sizes were extracted for each group to
calculate a measure of gain score for each group per transfer
measure. To obtain the correlations between pre- and posttest
performance (such correlations were reported for all measures
in only one of the studies), we contacted the authors of the
original studies. After the authors had responded, we had cor-
relations for 406 of the 507 within-sample pre-post compari-
sons. Where authors did not provide the correlations, we
attempted to deduce the correlation from other available infor-
mation in the study (e.g., the means and standard deviations in
combination with a t or F-value). We could deduce or give a
conservative estimate for 80 of the 101 remaining pre-post
correlations.Where we were unable to estimate the correlation,
we entered 0 as a correlation, essentially treating the pre- and
posttest measures as independent groups. The effect of using a
conservative correlation is that the within-sample pre-post
comparison is given a larger standard error and therefore less
weight in the meta-analysis. It is appropriate that we give less
weight to studies where we are less certain about the informa-
tion provided in the summation of effect sizes, but overly con-
servative estimates for the standard errors cannot be included
in analyses where the standard errors are of primary interest,
such as a publication bias analysis. A meta-analysis of the pre-
post correlations showed that the correlations were r = 0.659 (k
= 203, p < 0.001) for the pre-post measures in the training
group, r = 0.649 (k = 94, p < 0.001) for the pre-post measures
in the active control group, and r = 0.656 (k = 109, p < 0.001)
for the pre-post measures in the passive control groups.

To address the reliability of our coding of group sizes,
means, and standard deviations, we conducted a test of inter-
rater reliability. Ten of the 33 studies were randomly selected
and recoded by an independent researcher and the percentage
of agreement (i.e., same value or not) was calculated. The
interrater agreement was 97.1% for the 34 group size values,
100.0% for the 284 mean vales, and 99.6% for the 284 stan-
dard deviation values in the ten studies. Closer scrutiny re-
vealed two points of disagreement. When we returned to the
studies to retrieve the correct information, we found that the
first disagreement was an error made by the independent re-
searcher. Because the second disagreement amounted to less
than one decimal point, we deemed the coding as reliable.

Meta-analytical procedures

All effect sizes were calculated and all meta-analyses were
conducted using the Metafor package (Viechtbauer, 2010)
for R (R Core Team, 2008).

Calculation of effect sizes The effect sizes of interest were
pairwise comparisons of pre-post changes (i.e., the difference
in performance between the first and second cognitive test
sessions) between a training group and a control group. To
obtain these effect sizes, we first retrieved the within-group
pre-post effect sizes (gWITHIN) for each group and measure
included in a study. For gWITHIN, we calculated the standard-
ized mean pre-post change for each training and control group
separately using the escalc function in the metafor package
(Viechtbauer, 2010). In the function documentation, this effect
size is called a Bstandardized mean change using raw score
standardization^ (SMCR). Here, the raw gain score on a task
is standardized by dividing it by the standard deviation of the
pretest score, and the variance of the effect size is adjusted by
accounting for the correlation between the pre- and posttest
measure. To make the gWITHIN effect sizes comparable be-
tween training and control groups, we first pooled the standard
deviation across all groups within the same experiment.

To calculate an effect size representing the training effect
(gBETWEEN), that is, a between-groups effect size representing
the difference in pre-post change between a training group and
a control group, we subtracted the gWITHIN for the control
group from the gWITHIN for the training group. A positive
value thus indicates that the pre-post improvement was larger
(or, that the pretest-posttest decline was smaller) in the training
group compared to the control group. The variance for
(gBETWEEN) was calculated by summing the variance of the
within-group effect size for the two groups.

Multi-level modeling Six of the 33 studies (i.e., articles, the-
ses, or manuscripts) contained more than one experiment.
Here, separate experiments have their own set of training
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and control groups. For example, one experiment might com-
pare a training group of young individuals to a control group of
the same age, while another experiment compares training and
control groups with older individuals. Because one of the stud-
ies contained four experiments and four studies contained two
experiments, a total of 41 experiments were included from the
33 studies. Experiments also varied in the number of training
and/or control groups included. Twelve experiments (in 11
studies) included more than one training group. Eight other
experiments (in six studies) involved both an active and a
passive control group. The 41 experiments included, in total,
103 different training or control groups. These groups had been
measured before and after training, for between one and 13
different measures, depending on the study and experiment.
In total, the meta-analysis contained 507 within-sample pre-
post comparisons (gWITHIN) from a total of 2105 participants.

These 507 within-group effect sizes yielded 305 between-
groups effect sizes (i.e., comparisons between a training group
and a control group within an experiment). There were, how-
ever, several forms of dependency between effect sizes in this
structure. Effect sizes that are dependent are generally less
informative than independent ones. When two measurements
are perfectly correlated (e.g., measuring the improvement in
WM with two or more entirely interchangeable measures),
these measurements will provide the same information. This
means that including interchangeable measurements, while
assuming that they provide independent and unique informa-
tion, unduly inflates the confidence in the results of a meta-
analysis. In other words, unwarranted repetition of the same
information will lead to an incorrect narrowing of the confi-
dence estimates in a meta-analysis, which, in turn, increases
the risk of making type I errors (Becker, 2000; van den
Noortgate, López-López, Marín-Martínez, & Sánchez-Meca,
2013).

The following forms of dependency between effect sizes
need to be considered: The most obvious dependency is that
when multiple tasks are used to measure the training effect
within the same experiment, the outcomes on these tasks are
likely correlated. In other words, these outcomes represent the
training effect within the same participant(s). Second, effect
sizes for a training effect are also correlated when a particular
training group is compared with multiple control groups with-
in an experiment. Third, and similarly, effect sizes are corre-
lated when multiple training groups are compared with one
control group. Fourth, and lastly, effect sizes from multiple
experiments within a particular study may be correlated due
to similarities in experimental methodology and the experi-
mental setting.

With an adequate amount of data, the correlation within
each of these levels of dependency can be estimated in a mul-
tilevel framework. This model is, however, too complex for
the amount of data available, but a few simplifications can be
made that will make modelling considerably more

parsimonious with little loss of information and with few
added assumptions: (a) The experiments in the four studies
that had more than one experiment were too few to allow us
to estimate the variance between experiments within studies.
All experiments, however, have separate participants and the
dependency within participants is therefore handled adequate-
ly. Thus, for the sake of parsimony we did not model the
dependency between experiments within the same study, but
treated all 41 experiments as independent samples; (b) When
there were more than one training group, we performed an
internal fixed effects meta-analysis of the gWITHIN in the
groups producing a single gWITHIN for the training groups in
that experiment, and in the experiments where both an active
and a passive control group was used we disregarded the pas-
sive group (except for the comparisons between control
groups within studies). These simplifications limit each exper-
iment to one single comparison between a training group and
a control group per measure. This eliminates dependency be-
tween comparisons within an experiment that would reuse
training or control groups.

What remained were 203 estimated training effects (i.e.,
comparisons of training vs. control group) in 41 separate ex-
periments. These comparisons, in this framework, are present-
ed in Fig. 3 (see Table S3 for more detailed information about
pre-post effect sizes and group comparisons). Hence, our
model is a three-level model with random intercepts for each
unique experiment and for each unique measure within those
experiments. In other words, in addition to observing the var-
iance of participants’ results on a given measure in a given
experiment, we estimate the variance of the mean results of
different experiments, and the variance of mean results for
different measures within an experiment. Thereby, we can
account for, and estimate, the dependency of effect sizes
between-measures within experiments.

This dependency, or how strongly measurements are clus-
tered within experiments, can be estimated through the
intraclass correlation coefficient (ICC). It can be estimated
by dividing the variance between experiments by the sum of
the variance between and within experiments. The ICC, thus,
also describes the amount of the variance in the effect sizes
that can be attributed to differences between experiments. In
Fig. 3, variance both between and within experiments can be
discerned. When the variance within studies is small in rela-
tion to the variance between studies, the correlation within
studies is deduced to be high. In contrast, if measures within
studies vary to the point where eachmeasure could just as well
belong to any one of the experiments, the correlation is de-
duced to be close to zero. The ICC for the clustering of train-
ing effect among measurements within an experiment was
0.499. To evaluate whether the added model complexity paid
off, we also conducted ANOVA tests. The test between the
single- and two-level models was significant (LRT = 24.34, p
< 0.001), and so was the test between the two- and three level
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models (LRT = 12.34, p < 0.001). This indicates that the three-
level model is more adequate than a model treating all mea-
surements as independent.

Publication bias Several methods have been suggested
for the challenging task of identifying and estimating
the magnitude of publication bias (Rothstein, Sutton,
& Borenstein, 2005). One of the most often used among
these methods is the Btrim and fill^ method (Duval &
Tweedie, 2000). However, more novel and promising
methods, such as p-curve (Simonsohn, Nelson, &
Simmons, 2014) and variations of Egger’s regression
(Egger, Smith, Schneider, & Minder, 1997; Moreno
et al., 2009), have been found to perform better than
the trim and fill method.

The application of all these methods is complicated
by the dependency between effect sizes and the multi-
level approach in this study. For example, common p-
curve methods require independent effect sizes
(Simonsohn et al., 2014). Although a method account-
ing for dependency has been recently suggested (Bishop
& Thompson, 2016), p-curve methods are problematic if
studies include ghost variables (i.e., outcome measures

that have not been reported in the final study). While
selecting a subset of independent effect sizes could re-
lieve the problem of dependency, this approach would
lead to loss of information without resolving the prob-
lem of ghost variables. For our purposes, we find a
careful visual inspection of funnel plots accompanied
by regression-based methods to assess funnel plot asym-
metry to be the most fruitful approach.

We find two forms of funnel plots especially infor-
mative for our purposes. One is the so-called contour
enhanced funnel plot (Peters, Sutton, Jones, Abrams, &
Rushton, 2008) where each effect size is plotted against
the precision (inverse of the standard error). The vertical
reference line is drawn at 0 and the contours change
shade at different levels of two-tailed p-values. When
publication bias is absent, the individual effect size
measures should be distributed symmetrically around
the mean effect size, with measures with higher preci-
sion distributed more closely around the mean effect
size. Visually, this typically forms an inverted funnel
with the tip of the funnel further up in the plot and
close to the mean effect size. Publication bias due to
underreporting of non-significant findings should result

Fig. 3 Overview of the multi-variate and multiple-treatment structure of
the included studies. The figure displays effect sizes, sample sizes, and
cognitive domain (untrained n-back tasks [WM N-back], Working
Memory [WM], Cognitive control, and Fluid Intelligence [Gf]). The

horizontal axis indicates a Hedge’s g, with positive effects (favoring
training groups over control groups) to the right and vice versa. Two
effect sizes are outside the plotted range.
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in an asymmetrical funnel with effect size estimates
missing in the area of the plot indicating nonsignificant
results.

The second form of funnel plot that we find informative we
call a funnel plot of residuals. Publication bias is only one
possible explanation for funnel plot asymmetry. Another fea-
sible explanation is systematic heterogeneity due to modera-
tors (Egger et al. 1997). By plotting the residuals for the effect
sizes in the model against the standard error (with lower stan-
dard error higher on the y-axis), the moderators in the model
can be accounted for and the funnel plot asymmetry in relation
to the expected value for each effect size measure can be
examined. Similar contours as in the contour enhanced funnel
plots can be added. In these plots, we included the between-
study and the between-measure variance in the total variance
for an effect size. We used this plot to compare the effect sizes
to the mean effect for each cognitive domain. Simultaneously,
we accounted for the variance between and within studies.
Thereby, we were able to use these plots to also examine
outliers.

To more formally test for funnel plot asymmetry, we added
the standard error or variance of the effect size as a predictor to
pertinent meta-regression models. This is a close equivalent of
the PET-PEESE method suggested by Stanley and
Doucouliagos (2014), while simultaneously retaining our
three-level model.

In the PET-PEESE approach, the effect size is first
regressed on the standard error of the effect size in a
weighted least squares (WLS) regression with the stan-
dard error of the effect size as the weight. Testing if the
slope of the regression line is statistically significant
serves as a test for statistically significant publication bi-
as. The typical relationship when publication bias is pres-
ent is that higher standard errors are associated with larger
effect sizes. The intercept of this regression is interpreted
as an estimate of the effect in a hypothetical study of no
error (SE = 0) and therefore no bias. Testing whether the
intercept is statistically significant serves as a test of
whether there is a true, bias - corrected, effect different
from 0. This test is called the precision-effect test (PET).
In the simulation study by Stanley and Doucouliagos
(2014), PET performed well when the true effect in the
meta-analyzed studies was 0, with the intercept being a
slight overestimation of the true effect. When there was a
true effect, however, using the variance as the predictor in
the regression showed better performance. Here the inter-
cept was a slight underestimation of the true effect. This
test is called a precision-effect test with standard error
(PEESE). The authors thus suggested that PET is follow-
ed up by PEESE if PET shows a true bias - corrected
effect.

Stanley and Doucouliagos (2014) did not evaluate the
method in a three-level model but we find this approach to

be the best available method to estimate the true effect adjust-
ed for possible publication bias. Furthermore, we find that
adjusting for pertinent moderators in the same model is moti-
vated to exclude the possibility that there are small-study ef-
fects associated with the moderators rather than explainable
by publication bias. As such, this is a test most closely related
to the funnel plot of the residuals.

We did not plot effect sizes where we could not estimate the
pre-post correlation, as our conservative estimate (0) unduly
inflates the standard error and those observations thus differ
from the other combinations of effect sizes and their standard
errors.

Results

Descriptive results

The study sample consisted of 33 studies, including 41 exper-
iments, with, in total, 103 experiment groups. Of these groups,
54 (52.4%) were training groups and 49 (47.6%) were control
groups. Twenty-three (42.6%) of the training groups practiced
with a single n-back task, 30 (55.6%) with a dual n-back task,
and 1 (1.9%) with a triple n-back task. Twenty (40.8%) of the
control groups were active, and 29 (59.2%) were passive. See
Table 2 for a summary of study characteristics.

Data screening and assessment of publication bias

First, we investigated publication bias separately for each cog-
nitive domain. We plotted the effect sizes in four separate
contour-enhanced funnel plots: one for each domain. We then
fitted a model with cognitive domain as a moderator and plot-
ted the residuals in four separate funnel plots of residuals.

In the contour-enhanced funnel plots (Fig. 4, left column),
each effect size is plotted against its precision (1/SE, the in-
verse of the standard error). The vertical reference line is at g =
0. Contours change shade at different levels of two-tailed p-
values. Publication bias due to underreporting of nonsignifi-
cant findings should result in an asymmetrical funnel with
effect size estimates missing in the area of the plot indicating
nonsignificant results.While there was some asymmetry, there
was no obvious pattern of statistically significant effect sizes
being preferred over nonsignificant effect sizes.

In the funnel plot of residuals (Fig. 4, right column), each
effect size is plotted against the SE with lower SE higher up.
The vertical reference line is at the aggregated effect size for
the pertinent cognitive domain. The effect sizes are thus plot-
ted in relation to the expected value on each domain respec-
tively, with outliers falling outside the contour lines. Cognitive
domain was indeed a statistically significant moderator, QM

(3) = 21.60, p < 0.001 (Fig. 4).
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In these funnel plots, asymmetry is a little more apparent.
For cognitive control and Gf, there is a group of effect sizes
with high SE that show higher effect sizes than the aggregated
effect size for that domain. Furthermore, for all domains taken
together, a group of effect sizes stands out, because their SE is
uncharacteristically high for this sample. An examination re-
vealed 12 effect sizes with standard errors higher than 0.5,
which proved a natural cutoff point. Note that the standard
error in the funnel plot is based on the combined variance from
each level of the multilevel model and thus does not complete-
ly correspond to the standard error calculated for the effect
size alone.

There are two reasons for excluding these 12 effect sizes
from further analyses. First, removing them markedly reduces
funnel plot asymmetry. Effect sizes with high standard errors
are indeed most susceptible to publication bias, and removing
them will only lead to a small decrease in statistical power.
Second, these effect sizes are outliers in respect to their stan-
dard error and thereby they risk having a strong influence on
PET-PEESE analyses, in which the standard error is used as a
predictor.

The funnel plot of residuals also reveals two effect sizes for
Gf that we considered outliers. These two had standardized
residuals of 3.9 and −3.4, respectively. One of these was al-
so excluded based on its large standard error. We thus exclud-
ed 13 of the originally 203 effect sizes (see Table S3 for these
exclusions).

Training effects by cognitive domain

We then investigated the transfer effects by cognitive domain.
We found that the effect was largest for n-back, g = 0.62,
[0.44, 0.81], p < 0.001, followed by WM, g = 0.24, [0.16,
0.32], p < 0.001, cognitive control, g = 0.16, [0.05, 0.27], p
< 0.001, and Gf, g = 0.16, [0.08, 0.24], p < 0.001 (Fig. 5).

The moderation effect was significant QM (3) = 23.77, p <
0.001. The effect on n-back tasks differed from effects on all
other tasks (all ps < 0.001). There were no significant differ-
ences between the effects for other domains (all ps ≥ 0.134).
The test for residual heterogeneity was also significant QE

(186) = 230.59, p < 0.05.
After this, we reran our main analysis with all data includ-

ed. Again, the effect was largest for n-back, g = 0.63, [0.44,
0.82], p < 0.001, followed by WM, g = 0.24 [0.16, 0.33], p <
0.001, cognitive control, g = 0.17, [0.06, 0.29], p < 0.001, and
Gf, g = 0.16, [0.08, 0.24], p < 0.001. Note that although we
find the exclusion of outliers and effect sizes with uncharac-
teristically high effect sizes beneficial to the precision of our
analyses, the results are very similar before and after
exclusion.

As a test for potential small-study effects that could remain
even after our data screening, we added first the standard error
and then the variance of the effect size as a predictor in PET-

Table 2 Number of experiments and number of training-control
comparisons of measures per study characteristic

Study characteristic Number of experiments Number of comparisons

Total 41 305

Training groups

Single n-back 20 115

Dual n-back 25 188

Triple n-back 1 2

Control groups

Passive 29 198

Active 20 107

Cognitive domain

N-back 9 17

Working memorya 28 104

Verbal 28 70

Nonverbal 13 29

Fluid intelligence 35 133

Verbal 4 15

Nonverbal 35 118

Cognitive control 23 51

Sample age (yr)b

Young 33 271

Old 5 27

Year

2008 4 20

2010 1 8

2011 1 6

2012 7 44

2013 9 94

2014 7 54

2015 3 29

2016 6 21

Unpublished 3 29

Country of origin

Australia 2 4

Canada 3 9

Czech Republic 2 12

Finland 1 11

Germany 6 33

Poland 2 6

Spain 1 9

Switzerland 8 47

Taiwan 1 8

United Kingdom 2 8

United States 13 158

Young = sample age younger than age 60 years; Old = sample age 60
years or older
a For five of the comparisons in two experiments, the working memory
task could not be categorized as verbal or nonverbal
b Six samples in three experiments (7 comparisons) could not be catego-
rized as either young or old

1088 Psychon Bull Rev (2017) 24:1077–1096



PEESE type analyses. Neither the standard error (b = 0.067,
SE = 0.338, p = 0.844) nor the variance (b = −0.037, SE =

0.599, p = 0.951) were statistically significant predictors of
effect size. Because the estimated effect sizes for the cognitive

Fig. 4 Contour-enhanced funnel plots for each cognitive domain (by
rows). In the funnel plots in the left column, effect sizes are plotted
against their precision (1/SE). In the funnel plots in the right column,

effect sizes are plotted against the SE. The reference lines represent an
effect size of Hedge’s g = 0 (left column) and the mean Hedge's g within
each domain (right column).
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domains were close to identical to the ones reported above in
both analyses (the largest discrepancy was 0.02 points), we
conclude that, after data screening, there was no evidence of
publication bias affecting our conclusions.

Control analyses

The type of control group (active vs. passive), moderated
slightly, but statistically significantly, the estimated training
effect (g = 0.11, [0.00, 0.22], p = 0.048). After controlling
for the type of control group, training effects were still largest
for n-back, g = 0.59, p < 0.001, followed byWM, g = 0.18, p <
0.01. The effect sizes for cognitive control was g = 0.08, p =
0.202. For Gf the effect size was g = 0.11, p > 0.05. (Estimates
for experiments with passive control groups are 0.11 points
higher).

The analysis on transfer to WM was run also without
simple spans so that the WM domain would be more sim-
ilar to previous meta-analyses that have investigated simple
spans separately. This resulted in a slightly smaller training
effect for WM (g = 0.21, [0.12, 0.30], p < 0.001), but the
effect size was within the confidence intervals of the earlier
estimate.

We also reran the analysis with n-back measures pooled
with other measures of WM (including simple spans). This
resulted in an increase of the training effect on WM, g =
0.29 [0.21, 0.37], p < 0.001.

Efficacy of N-back training in different training contexts

Furthermore, we investigated the effects of training type
(single or dual n-back training), training dose (number of
sessions and hours of training), and sample age (young or
old) on the effects of N-back training. Training type (sin-
gle or dual n-back training) did not produce significantly
different training effects, QM (1) = 2.19, g = 0.09 [−0.03,
0.21], p = 0.139, as there was a similar training effect for
single n-back training, g = 0.27 [0.18, 0.37], p < 0.001,
and dual n-back training, g = 0.18 [0.11, 0.26], p < 0.001.
The test for residual heterogeneity remained significant,
QE (188) = 254.86, p < 0.001. Because the main analyses
showed a significant effect of cognitive domain, we reran

the analysis with cognitive domain as a covariate. This
did not alter the effect of training type, g = 0.06 [−0.05,
0.18], p = 0.300.

We did not find any effect of the number of sessions, QM

(1) = 0.02, g = −0.01 [−0.13, 0.12], p = 0.902, and g = −0.03
[−0.14, 0.09], p = 0.685, with cognitive domain as a covariate.
Neither did we find any effect of hours of training, QM (1) =
0.03, g = 0.01 [−0.12, 0.14], p = 0.872, and g = g = 0.00
[−0.12, 0.12], p = 0.981 with cognitive domain as a covariate.

We then analyzed whether sample age moderated the train-
ing effect. We found no effect of age, QM (1) = 0.07, g = 0.03
[−0.17, 0.22], p = 0.794. Adding cognitive domain as a co-
variate to the analysis did not alter the effect, g = 0.02 [−0.16,
0.20], p = 0.834.

Transfer of N-back training to different materials

To investigate whether dual n-back training produced different
effects depending on the transfer task materials (verbal vs.
nonverbal), we conducted an analysis in which only WM
and Gf measures were included. The n-back measures and
cognitive control measures were not included, because the
number of effect sizes was insufficient. The difference be-
tween verbal and nonverbal transfer measures was not signif-
icant, QM (3) = 1.77, p = 0.623. The test for residual hetero-
geneity was not significant, QE (103) = 123.43, p = 0.08
(Fig. 6).

Active and passive control groups

To investigate whether the pre-post change in active and pas-
sive control groups differed, we conducted a comparison be-
tween active and passive control groups within the same ex-
periment. Here g is calculated similarly to the treatment effect;
the difference in gWITHIN between the active and the passive
control group. This analysis of, in total, 34 effect sizes re-
vealed no differences between the two types of control groups,
g = 0.03 [−0.07, 0.12], p = 0.429. The effect of the type of
control group was not significantly different between the four
cognitive domains, QM (3) = 6.81, p = 0.078.

Fig. 5 For each cognitive domain, the figure displays synthesized effect sizes and confidence intervals for the comparison of pretes- posttest
improvements between training groups and control groups. Positive values favor the training groups and negative values favor control groups.
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Discussion

We examined the efficacy of one of the most commonly used
WM training paradigms, namely the n-back task. In contrast
to previous meta-analyses in the field, we did not lump un-
trained versions of the training task together with the other
WM transfer measures. Instead, we deemed it as important
to keep these two types of transfer measures separate to be
able to examine whether n-back training mainly yields task-
specific transfer or more general WM improvement. We also
took into account certain methodological shortcomings that
limit the interpretability of previous meta-analyses on WM
training effects. From each original study sample, previous
meta-analyses have included only one measure (or an average
of several measures) per cognitive domain in the analyses. We
employed a multi-level meta-analytical approach to be able to
include all measures from the original studies, and thereby
obtain a less biased estimate of the training effects. We took
full advantage of the repeated measures design in the original
studies by accounting for the correlation between pre- and
posttest performance and thereby increasing the statistical
power of our analyses.

Main analyses

The present meta-analysis included 203 training effects (190
after data screening) from 33 studies. These studies consisted
of 41 unique experiments. In total, data were obtained from
2,105 individuals. The results from the main analyses showed
a moderate effect of task-specific transfer to untrained n-back
tasks and very small transfer effects to other untrained WM
measures, cognitive control, and Gf.

The transfer effect to untrained WM tasks as a whole is
approximately of the same size as in the n-back training anal-
yses by Melby-Lervåg et al. (2016; when averaged across
verbal and nonverbal WM and active and passive control
groups) but considerably smaller than in the other meta-
analyses not focusing specifically on n-back training (Melby-
Lervåg & Hulme, 2013; Weicker et al., 2016; Schwaighofer
et al., 2015; Table 1). There are several possible reasons for this
discrepancy. First, Melby-Lervåg & Hulme (2013) who

reported the highest effects of near transfer, in some cases
included the training task in their analyses, resulting in an
overestimation of the near transfer effect. Second, except for
Melby-Lervåg and Hulme (2013), all previous meta-analyses
investigating near transfer of WM training have excluded sim-
ple spans from theWM transfer domain.We decided to include
simple spans as it has been argued that simple and complex
spans (the latter ones being included both in previous meta-
analyses and the present one) can in fact be considered as
measures of the same cognitive processes (Unsworth &
Engle, 2007). Nevertheless, when we ran the same analysis
without the simple spans, the effect size remained similar (g
= 0.21). Third, Jaeggi et al. (2010) have suggested that the near
transfer effects may be smaller following n-back training than
training with other WM training paradigms, because the n-
back task shows low correlations with other WM tasks.
However, a recent study showed that n-back tasks are in fact
highly correlated with other WM tasks at a latent level
(Schmiedek et al., 2014). Fourth, the differences between the
size of the near transfer effect in the previous meta-analyses
and the present one may be partly related to differences in the
inclusion of studies, and the fact that we included all relevant
measures from each original study in our analysis. Finally, in
light of the present results, perhaps the most important expla-
nation for higher effect sizes forWM transfer in previous meta-
analyses is the fact that those studies have not separated un-
trained variants of the training task from other WM tasks. This
could be even a more acute problem in meta-analyses on stud-
ies using several training tasks where it becomes more likely
that the transfer tasks include untrained versions of the training
tasks. In an attempt to investigate this, we reanalyzed the data
from healthy adults included in Melby-Lervåg et al. (2016) by
separating between untrained versions of the training task(s)
and other untrained WM tasks. We excluded those studies in
which the n-back task was the only training task in order to be
able to examine if the inclusion of untrained versions of the
training task(s) leads to an overestimation of the near transfer
effects also for other training paradigms. The pooled effect size
for all types of WM tasks was g = 0.29 [0.18, 0.40] p < 0.001.
However, when analyzing untrained versions of the training
tasks separately from other WM tasks, the results showed that

Fig. 6 For both verbal and nonverbal transfer task materials for fluid
intelligence (here: reasoning) and working memory (WM), the figure
displays synthesized effect sizes and confidence intervals for the

comparison of pre-post improvements between training groups and
control groups. Positive values favor the training groups and negative
values favor control groups.
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the effect size was significantly stronger, QM (1) = 8.89, p <
0.01, for the former, g = 0.62 [0.38, 0.86] p < 0.001 (number of
effect sizes = 19), than the latter, g = 0.21, [0.08, 0.33] p < 0.01
(number of effect sizes = 70). The findings of this reanalysis
are in line with the present meta-analysis and indicate that also
for other WM training paradigms, task-specific transfer is im-
portant to take into account when investigating transfer effects.
These results go against the idea that the transfer effects in the
present study are lower because of issues with concurrent va-
lidity of the n-back task.

For cognitive control, the transfer effect was approximately
of the same size as in the two previous meta-analyses investi-
gating transfer of different kinds of WM training to executive
functions and attention (Melby-Lervåg & Hulme, 2013;
Weicker et al., 2016). Also for Gf, the present transfer effect size
is roughly in line with the three previous meta-analyses investi-
gating transfer to Gf from n-back training (Au et al., 2015;
Melby-Lervåg & Hulme, 2016; Melby-Lervåg et al., 2016).

In sum, in the present meta-analysis, the only notable trans-
fer effect is seen to untrained n-back tasks. Despite the fact
that the transfer effects to the other domains are also statisti-
cally significant, they can be considered very small. This is
because an effect size of 0.2 means that only approximately
1% of the variance of the dependent variable (e.g., score on a
Gf task) can be explained by which group (training or control
group) the participant belongs to. The practical significance of
such effects can thus be questioned (see also Melby-Lervåg &
Hulme, 2016).

Mechanisms behind transfer

We hypothesized that if n-back training enhances the WM
components it consists of, the magnitude of transfer effects
would follow the presumed cognitive overlap between the
transfer tasks and the training task (Dahlin et al., 2008;
Waris et al., 2015). This would result in a gradual decrease
in effect sizes, with the strongest transfer effects to un-
trained n-back tasks, followed by otherWM tasks, cognitive
control, and Gf. However, in the present study, the only
noteworthy transfer effect was seen to untrained n-back
tasks, while transfer to other tasks was at similar, very small
levels. This pattern of results suggests that the transfer ef-
fects of n-back training are mainly caused by acquisition of
task-specific aspects such as suitable strategies, rather than
better-functioning WM components. This is because task-
specific improvement can enhance performance only on
tasks with a similar structure where the same strategies can
be succesfully employed. An actual improvement in the
effectiveness of the underlying WM components such as
flexibility of updating and storage capacity, on the other
hand, should result in broad transfer effects to different
kinds of measures (von Bastian & Oberauer, 2014). A po-
tential caveat is that a similar pattern of results as the one

seen here could also be due to an improvement that is lim-
ited to the updating component. This is because we did not
separate between updating tasks and other WM tasks in the
analyses. However, a post hoc analysis of our data showed
that the transfer effects to updating tasks other than n-back
(g = 0.26) were roughly of the same size as the transfer
effects to other WM tasks (g = 0.23), strengthening the con-
clusion that n-back training mainly improves task-specific
aspects and not WM. It may thus be that the very small and
similar effects of transfer to other WM tasks, Gf tasks and
tasks measuring cognitive control reflect some general ef-
fects such as enhanced attention, perceptual speed, or get-
ting used to the computer and performing demanding cog-
nitive tasks.

Moderator analyses

We also investigated whether the choice of control group af-
fected the training outcome. The results showed no differences
in improvement between passive and active control groups
when comparing them within studies that had employed both
types of control groups. Based on these results, we agree with
Au et al. (2015) in that there does not seem to be any clear
support for the idea that Hawthorne effects affect the results.
However, when adding the type of control group as a co-variate
to our main analysis, the results revealed a small, significant
effect. This could mean either of two things: the within-study
comparison was underpowered, failing to find a true difference,
or the training groups perform better in studies with passive
controls than in studies with active controls. The latter expla-
nation has also been proposed by Au et al. (2015).

Also, the results from the present meta-analysis do not give
us reason to claim that publication bias plays a major role in the
results. However, the reviewed studies contained a few obser-
vations that could be considered outliers. These were removed,
because they either over- or underestimated the training effect
beyond what was expected from sampling error alone.

Regarding the other moderators in the present meta-analy-
sis, the results showed no difference in transfer effects be-
tween young and old participants. On the whole, this is in line
with the previous meta-analyses (Melby-Lervåg & Hulme,
2013; Schwaighofer et al., 2015; Melby-Lervåg et al., 2016).
The results also showed that training with single or dual n-
back tasks was equally effective in producing transfer to the
four cognitive domains. This concurs with the Au et al. (2015)
meta-analysis showing similar transfer effects to Gf after sin-
gle and dual n-back training. The number of training hours or
sessions did not affect the transfer results either, again in line
with most of the previous meta-analyses. However, Weicker
et al. (2016) found that the number of training sessions was
positively related to the size of the transfer effect to WM. This
difference in results may stem from several sources. While the
present meta-analysis focused on n-back training in healthy
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adults, the Weicker et al. (2016) meta-analysis included stud-
ies investigating all kinds of WM training paradigms in both
healthy and clinical samples of children and adults. It is in
principle also possible that higher amounts of n-back training
than what is currently used might yield stronger effects.
Finally, in line with the Au et al. (2015) meta-analysis, our
results indicated that it did not matter if the WM and Gf trans-
fer tasks consisted of verbal or nonverbal material.

Limitations of the present study

The present meta-analysis focused on only one type of WM
training, namely n-back training. By restricting the analysis to
only one training task type, it was easier to interpret the pres-
ent pattern of transfer effects. Investigating transfer elicited by
several training tasks makes it even more challenging to sep-
arate between task-specific effects and increased effectiveness
of general WM mechanisms. We were able to conclude that
out of the four cognitive domains studied here, n-back training
produces substantial transfer only to untrained variants of the
training task. Transfer effects to other tasks (whether they
measure WM, Gf, or cognitive control), albeit being observ-
able, are small and apparently of little practical significance.

Due to the limited number of available studies, we were not
able to investigate transfer to other cognitive domains than the
four studied here. For the same reason, we could not perform
all the moderator analyses for all four cognitive domains (e.g.,
material-specific aspects of transfer were investigated only for
WM and Gf), and we refrained from investigating interactions
between moderators.

Directions for future studies

There is still much controversy regarding the efficacy of WM
training, despite the fact that the issue has been investigated in
many training studies and a fewmeta-analyses.We believe that
much of the controversy is due to the great variability between
training studies regarding for example the choice of training
and transfer tasks, control group, and study population. This
variability is then reflected in meta-analyses as well, because
different researchers will make different choices in categoriz-
ing tasks, participant groups, and studies. On the one hand, one
could think that variation in for example transfer tasks is im-
portant in order to be able to draw conclusions about improve-
ment in general WM mechanisms (for a discussion, see e.g.,
Shipstead, Redick et al., 2010; Shipstead et al., 2012). This is
because cognitive tasks always involve variance that stems
from other sources than the ability of interest. Apart from ran-
dom error (such as variation in alertness or disturbing noises in
the testing environment), such variance comes from other abil-
ities engaged in solving the tasks, strategies employed by the
participants, or differences related to the type of stimuli in-
volved. Therefore, it has been recommended that training

studies should utilize factor analysis to analyze transfer at a
latent variable level that should provide more reliable informa-
tion about the ability of interest compared to task-specific per-
formance (Schmiedek, Lövdén, & Lindenberger, 2010). On
the other hand, the present results indicate that task-specific
aspects play an important role in the transfer effects. A failure
to make a distinction between task-specific and other WM
transfer not only inflates effect sizes for near transfer, but
may even lead one to a wrong track when searching for theo-
retical explanations forWM training effects (i.e., assuming that
WM training increases the effectiveness of WM in general,
rather than considering also alternative hypotheses on
strategy-based effects). Thus, if one wants to shed more light
on the underlying mechanisms of transfer, more emphasis
should be put on task-specific aspects. It would be important
to systematically analyze performances in tasks that are closely
related to the training task, in order to find out which are the
mechanisms that drive the major transfer effects.

As previously mentioned, there is, however, not much re-
search on what different executive tasks actually measure and
how reliable they are over time. Low task reliabilities together
with small sample sizes (often employed in training studies),
result in weak statistical power and consequently lower
chances of observing a putative effect of training.

We believe that it would be important for future studies to
try to solve issues related to task reliability and validity, pairing
of training and transfer tasks, and statistical power, rather than
conducting more training studies that carry the current meth-
odological problems. Ultimately, training effects should also
be evaluated with measures that are more closely tapping real-
life working memory demands. Furthermore, future studies
should pave a way to a theory of the processes involved in a
training-induced change in WM, a theory that is currently
missing (Gibson, Gondoli, Johnson, Steeger, & Morrissey,
2012). Our results highlighting the role of task-specific transfer
suggest that a considerable part of the transfer effects is related
to self-generated performance strategies that emerge during a
repeated practice with a limited set of WM tasks. We concur
with what Shipstead, Hicks, and Engle (2012) stated 4 years
ago: BWorking memory training remains a work in progress.^

Conclusions

The present meta-analysis on the efficacy of n-back training
shows medium transfer effects to untrained versions of the
trained n-back tasks and small transfer effects to other WM
tasks, cognitive control, and Gf. Our results suggest that pre-
vious meta-analyses investigating the effects of WM training
have overestimated the transfer effects to WM by including
untrained variants of the training tasks in their WM transfer
domain. Consequently, transfer of n-back training is more
task-specific than has previously been suggested.
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